

Operating manual

Sensor Signal Amplifier SV_flex_RMC

1-Channel, PCM, RMC

Manner Sensortelemetrie GmbH Eschenwasen 20 D-78549 Spaichingen

Telephone: +49 (0)7424 9329-0 Fax: +49 (0)7424 9329-29

E-mail: info@sensortelemetrie.de Internet: www.sensortelemetrie.de

11023, 1, en_US

Revision History:

Document code	Date	Modification	Approval
11022, 1, en_US	2019-10-10	Creation of documentation	2019-10-10, von Borcke

Copyright	All rights for duplicating, photomechanical reproduction – also extracts - are explic- itly reserved by the enterprise Manner Sensortelemetrie. Trade marks and trade names were used without verification of the free applicability.
Disclaimer Documentation	The texts and examples were prepared with care. Mistakes can not be excluded. The enterprise Manner Sensortelemetrie will assume no liability for missing or incorrect information and resulting consequences, neither judicial nor otherwise.
Modifications	The enterprise Manner Sensortelemetrie GmbH may change or upgrade hardware and software – or parts of them - as well as the provided documents (operation instructions, start-up instructions, spare parts lists) – or parts of them – without notification.
	We would be pleased for suggestion for improvement and notes about mistakes. ©September 2019, Manner Sensortelemetrie GmbH

Table of contents

1	Safety	4
	1.1 Definition of Warnings	4
	1.2 General Warnings	. 4
2	Conventional Usage	. 6
3	Technical Data	7
	3.1 Measuring System	. 7
	3.2 Sensor Signal Amplifier, Sensors	8
	3.2.1 Gain Bandwidth Characteristic	. 9
	3.2.2 Operation Mode Strain Gauge	10
	3.2.3 Remote Shunt Calibration Function	11
	3.2.4 List for Shunt Calibration Resistor	12
	3.2.5 Operation Mode PT100	13
4	Mounting / Starting	14
	4.1 Mounting of Sensor Signal Amplifier	14
	4.1.1 Test of Stroke Processing at CAL and RMC Data	15
	4.2 Adjustment of the Rotor Antenna Loop	15
	4.2.1 Adjustment Rotor Antenna	16
	4.3 Sealing with Ultifil	18
	4.4 Coupling / Installation	20
	4.5 Test Circuit	22
5	Options	23
6	Software Interface for 1-4 Channel Systems V2.8.300	24
	6.1 Installation of the USB Driver - Installation steps for	74
	6.2 Installation of the Software	24
	6.3 Installation of the additional Data Viewer Software for MDE Files	25
	6.4 Setting up the Interface-Software	25
	6.5 Using the Interface Software	20
	6.6 Data file format (Option Data Acquisition)	32
	6.7 Data File-Structure (Option Data Acquisition)	33
7	Maintenance	34
8	Contact	35
0	Contact	33

1 Safety

1.1 Definition of Warnings

Hint for possible dangerous situation. Ignoring the security terms may cause death or serious injury.

WARNING!

Hint for possible dangerous situation.

Ignoring the security terms may cause injury.

CAUTION!

Hint for possible damage of property, if the corresponding protective measure were disregarded.

Further information

1.2 General Warnings

The system startup has to be carried out by trained qualified personnel, who is able to evaluate the potential risks. All chapters of this instruction manual had to be read and fully understood before startup.

On non-observance it's not possible to assert a claim for the incurred losses from the manufacturer. Any changes to the system, except those described in the instruction manual and customer documentation, will invalidate any warranty.

DANGER!

DANGER!

Risk of Injury by Incorrect Installation

Incorrect installation can cause injury to persons directly while the installation or during the subsequent startup

Note the Mounting Hint (see chapter 4, installation instruction)

The system startup has to be carried out by instructed qualified personnel that's familiar with

- the professional handling of security relevant components,
- the valid regulations for operational safety und rules for accident prevention.

Risk of Injury by Unintentional Startup

Rotating or moving of parts by inadvertent startup of the machine can cause injury .

During all mounting, demounting or repairing the system has to be powered-off. Note the mounting instructions.

DANGER!

Risk of Injury by Movable Parts

While normal operation, as well as inadvertent loosening of parts of the telemetry system during operation, present persons may be injured if protective equipment is absent.

Check the safety function of the protective equipment particularly

- before each startup
- after each replacement of a component
- after a longer standstill
- after each defect

Independent thereof the safety function of the protective equipment must be checked in suitable time intervals as part of the maintenance work!

WARNING!

Risk of Burn Injury *While operation the sensor signal amplifier and the stator antenna*

may become warm.

Avoid contact.

CAUTION!

Risk of Property Damage

If the connectors disconnected / connected while the system is powered on the telemetry system as well as the connected devices can be damaged.

Plug connectors must not be disconnected / connected when the system is powered on.

2 Conventional Usage

Sensor telemetry systems are used for contact-free data and power transfer from passive and active sensors (e.g. on rotating shafts).

Risk of Subsequent Damages caused by Malfunctions

If the telemetry system is used for measurement and control tasks for which it was not designed, there is a risk of consequential errors and even personal injury.

The delivered system has to be used exclusively for the purpose for which it was ordered.

The operator must take care of his health and safety.

The operator of the equipment must prevent subsequent errors following faulty measuring results. This is particularly necessary if the telemetry system is used in controlling or regulating functions.

The customer, as the builder of a system with an integrated sensor telemetry system, is responsible for the correct and conform operation and also assumes the responsibility for ensuring that the system at start-up complies with all provisions of Directives 2014/53/EU and 2014/35/EU.

Scope of Delivery

A telemetry system normally contains:

- Evaluation unit
- Stator antenna
- Rotor antenna
- Sensor signal amplifier
- HF cable

For the detailed purchased parts package of the delivered telemetry system mind the corresponding shipping ticket.

3 Technical Data

3.1 Measuring System

Technical Data Telemetry System

General Measuring Configuration

Term	Value
HF frequency	13.56 MHz
Number of channels	1
Bandwidth	0 to 1 kHz (-3dB)
Linearity	<0.1%

Fig. 1: General measuring configuration

Block Diagram

Fig. 2: Block diagram

Energy and Data Flow

Fig. 3: Energy and data flow

3.2 Sensor Signal Amplifier, Sensors

Technical Data Sensor Signal Amplifier

Term	Value
Sensor signal amplifier type	SV_flex_PCM16_RMC
Sensor	Strain gauge
	(strain gauge resistor \ge 350 Ω),
	PT100
Type of modulation	PCM
HF frequency	13.56 MHz
Channel sample rate	6.62 kS/s
Bridge supply voltage $[U_B]$	3.3 V
Coarse voltage [U _{coarse_max}]	6.4 to 7,2 V
Zeropoint and gain drift	0.02% / °C
Linearity	0.1% typ.
Amplification (adjustable by software)	0.05 to 10 mV/V
Bandwidth	0 to 1 kHz
Resolution	16 Bit with 16 Bit CRC
Protection class	IP42
Temperature range	-10 to +85°C

The output signal bandwidth ranges from 0 to 1 kHz.

Fig. 4: SV_flex_PCM16_RMC, Pin assignment

3.2.1 Gain Bandwidth Characteristic

Gain Bandwidth Characteristic

Fig. 5: Gain bandwidth characteristic

3.2.2 Operation Mode Strain Gauge

UB

1+

Fig. 6: Operation mode strain gauge (full bridge)

I-

Fig. 7: Operation mode strain gauge (half bridge)

3.2.3 Remote Shunt Calibration Function

3.2.4 List for Shunt Calibration Resistor

 $E = dL * k_{Factor}$

 $R_{shunt} = 1 / (-1+1 / (-1+1 / (0.5+E / 1000))) * R_{strain} = (500-E) / (2*E) * R_{strain}$

The system is based on a 350 Ω full strain gauge bridge !!!

	List for the	Shunt Resisto	r (Strain Gau	ge Full Bridge)	
k _{Factor}	2.05				
Expansion dL (μm/m)	Electrical signal E (mV/V)	$\begin{array}{l} {\sf R}_{\sf shunt}({\sf k}\hat\Omega){\sf for}a\\ {\sf 350}\Omega{\sf R}_{\sf Straingauge}\\ {\scriptstyle (100\%adjustment)}\end{array}$	Rshunt (kΩ) for a 350Ω R _{Strain gauge} (80% adjustment)	$\begin{array}{l} {\sf R}_{\sf shunt} ({\sf k}\hat{\Omega}) \ {\sf for} \ {\sf a} \\ {\sf 1000} \Omega \ {\sf R}_{\sf Strain \ {\sf gauge}} \\ {\sf (100\% \ {\sf adjustment})} \end{array}$	$R_{shunt} (k \dot{\Omega})$ for a 120 $\Omega R_{strain \ gauge}$ (100% adjustment)
2002 4200	0	10.70	10.45	20.75	2.60
3902.4390	8	10.76	13.45	30.75	3.69
3414.6341	/	12.33	15.41	35.21	4.23
2926.8293	6	14.41	18.01	41.17	4.94
2439.0244	5	17.33	21.66	49.50	5.94
1951.2195	4	21.70	27.13	62.00	7.44
1463.4146	3	28.99	36.24	82.83	9.94
975.6098	2	43.57	54.47	124.50	14.94
487.8049	1	87.32	109.16	249.50	29.94
439.0244	0.9	97.05	121.31	277.28	33.27
390.2439	0.8	109.20	136.50	312.00	37.44
341.4634	0.7	124.82	156.03	356.64	42.80
292.6829	0.6	145.66	182.07	416.17	49.94
243.9024	0.5	174.83	218.53	499.50	59.94
195.1220	0.4	218.58	273.22	624.50	74.94
146.3415	0.3	291.49	364.36	832.83	99.94
121.9512	0.25	349.83	437.28	999.50	119.94
97.5610	0.2	437.32	546.66	1249.50	149.94
60.9756	0.125	699.82	874.78	1999.50	239.94
48.7805	0.1	874.83	1093.53	2499.50	299.94
43.9024	0.09	972.05	1215.06	2777.28	333.27
39.0244	0.08	1093.57	1366.97	3124.50	374.94
34.1463	0.07	1249.82	1562.28	3570.93	428.51
30.4878	0.0625	1399.83	1749.78	3999.50	479.94
29.2683	0.06	1458.16	1822.70	4166.17	499.94
24.3902	0.05	1749.82	2187.28	4999.50	599.94
19.5122	0.04	2187.32	2734.16	6249.50	749.94
14.6341	0.03	2916.49	3645.61	8332.83	999.94
9.7561	0.02	4374,82	5468.53	12499.50	1499.94

Note:

When using a **half** strain gauge bridge the same mechanical expansion [dL] results in a **half** of the electrical signal [E] shown in the table above.

e.g. dL = 487.8049 $\mu m/m \rightarrow$ E = 0.5 mV/V \rightarrow R_{Shunt} = 174.84 k Ω \ldots

When using a **quarter** strain gauge bridge the same mechanical expansion [dL] results in a **quarter** of the electrical signal [E] shown in the table above.

e.g. dL = 487.8049 $\mu m/m \rightarrow$ E = 0.25 mV/V $\rightarrow R_{Shunt}$ 349.83 k Ω ...

Usage of a strain gauge bridge resistor deviating from the standard resistor

Deviation of sensor signal gain [mV/V] when using strain gauge bridge resistor other than 350 $\Omega.$

Applied bridge resistor R _{strain gauge} [Ω] fullbridge	Deviation of the sensor signal gain to the reference value R _{strain gauge} = 350 Ω fullbridge
120	+1.0%
350	0.0%
700	-1.8%
1,000	-3.1%
1,400	-5.0%
2,000	-7.5%
3,000	-11.5%
4,400	-16.6%
5,000	-18.6%

3.2.5 Operation Mode PT100

Fig. 10: Operation mode PT100

Sensitivity mV/V	Temperature °C
11.6	500
5.8	250
2.9	125
1.45	62.5
1.0	≈45

Not calibrated. Factory setting 1 mV/V

4 Mounting / Starting 4.1 Mounting of Sensor Signal Amplifier

2.

3.

of 2 mm

1. Clean the area for the rotor loop with denatured alcohol and acetone and dry with compressed air

Glue the strip of copper foil without bubbles round the shaft with an overlap

Solder the copper foil thin and plane Soldering iron 80W, soldering tip about 3

Copper foil

Shaft

- mm wide Soldering temperature 450°C
- **4.** Glue an insulating foil over the copper foil There must be no breakthrough from the sensor signal amplifier at any time
- **5.** Fix the sensor signal amplifier at two locations on the insulating foil with superglue
 - Fix the transformer on the insulating foil with superglue
 - **6.** Solder the wire 'GND for grounding' to the copper foil
 - **7.** Connect the sensor signal amplifier and the transformer with the rotor antenna (soldering terminal)
 - 8. HF adjustment- see 'Adjustment rotor antenna'
 - 9. Optional, if build up location and equipment enables it:

 $\ensuremath{\mathfrak{G}$ Chapter 4.1.1 "Test of Stroke Processing at CAL and RMC Data" on page 15

- **10.** Operate functional check
- **11.** If there are too much disturbances from the rotor antenna and the signal has too much noise:

Glue an insulating foil over the sensor signal amplifier

- There must be no breakthrough from the sensor signal amplifier at any time
- **12.** Glue a piece of copper foil over the sensor signal amplifier (not over the transformer) and solder the copper foils
- **13.** Operate functional check
- **14.** Seal the sensor signal amplifier and the rotor antenna.

Joint _\ ∕ Copper foil	View to th	e <i>cutting edge</i> Joint
		Shaft

4.1.1 Test of Stroke Processing at CAL and RMC Data

- 1. Start the USB software and activate 'Test Connection'
- **2.** Connect 'RMC data/cal' pin 3 at the connector (between evaluation unit and USB adapter) as trigger signal with the oscilloscope (use pin 5 for ground)
- **3.** Measure with a probe 10:1 at the position 'Mod-Pin' and compare with a second probe at the position 'Output' (at least 4 strokes during the continuous high phase of the 'Mod-Pin' must exist) use GND of the rotor electronic as ground.
- **4.** Variation of the antenna distances: conditions must be met over the complete transmission range

- 5. Alternative this function can be tested without oscilloscope by checking the screen display of the function 'Test Connection' during the Variation of the antenna distance (the acknowledge display must be shown in black; red signals a failure). With this method however the security stock can not be estimated.
- **6.** If the conditions are not met the antenna system must be re-adjusted

4.2 Adjustment of the Rotor Antenna Loop

Pinning Sensor Signal Amplifier

Fig. 11: SV_Flex_PCM_RMC

4.2.1 Adjustment Rotor Antenna

Installation for Adjustment

Sensor signal amplifier

Fig. 12: Adjustment rotor antenna loop

1. Build up the measuring system. Add a load resistor R_L = bridge load/number of channels between U_{coarse} and GND.

Connect the terminals of the sensor signal amplifier $\mathsf{HF1}$ and $\mathsf{HF2}$ to the rotor antenna.

- 2. Solder a variable capacitor (0 to 500 pF) parallel to the rotor antenna (pay attention to short connecting leads), set the HF energy adjustment screw (if present) on the stator antenna to the middle position and align the stator antenna correctly to the rotor antenna.
- **3.** Connect the voltage U_{coarse} with a digital multimeter for voltage measurement.
- **4.** Set the HF power control of the evaluation unit (if available) to MINIMUM.

Switch on the evaluation unit and measure U_{coarse}.

The voltage U_{coarse} must be less than (U_{coarse_max} - 3,0 V) for the adjustment procedure. If U_{coarse_max} is reached the load resistor can be downsized or the coupling distance between rotor and stator antenna can be enlarged.

 $U_{\text{coarse max}}$ see technical data of the sensor signal amplifier.

5. Change the variable capacitor until the maximum voltage is reached. If the voltage exceeds $U_{\rm coarse_max}$ reduce the HF power.

If the range is not in the variable range of the variable capacitor, connect a static capacitor (470 pF) parallel.

6. Disconnect the variable capacitor and determine the set value with a capacitance meter

Adjustment <u>with</u> Variable Capacitor

- **Z.** Solder the next smaller value from the DIN series as a static capacitor (ceramic multilayer, COG).
- **8.** Repeat the procedure to refine the result. Solder the determined difference value as a static capacitor parallel to the first one.
- **9.** Remove the load resistor.
- **10.** Check the strain gauge bridge supply.
- **11.** Remove the digital multimeter.

Adjustment <u>without</u> Variable Capacitor

NOTICE!

All used capacitors **must be** COG type ≥100 V

- For a HF power >3 W **two** capacitors must be connected in series for load spreading.
- **1.** Build up the measuring system. Add a load resistor R_L = bridge load/number of channels between U_{coarse} and GND.

Connect the terminals of the sensor signal amplifier $\mathsf{HF1}$ and $\mathsf{HF2}$ to the rotor antenna.

Solder in a 47 pF capacitor parallel to the rotor antenna, turn the HF power adjustment screw of the stator antenna (if existent) to mid-position and position the stator antenna correct to the rotor antenna.

- **2.** Connect the voltage U_{coarse} with a digital multimeter for voltage measurement.
- 3. Set the HF power control of the evaluation unit (if available) to MINIMUM.

Switch on the evaluation unit and measure U_{coarse}.

The voltage U_{coarse} must be less than (U_{coarse_max} - 3,0 V) for the adjustment procedure. If U_{coarse_max} is reached the load resistor can be downsized or the coupling distance between rotor and stator antenna can be enlarged.

U_{coarse max} see technical data of the sensor signal amplifier.

- **4.** Increase the value of the capacitor in 47 pF steps and establish the maximum of U_{coarse}
- **5.** Improve the result with 22 pF steps.
- **6.** Remove the load resistor.
- 7. Check the strain gauge bridge supply.
- 8. Remove the digital multimeter.

After successful adjustment of the rotor antenna, the data reception by the stator antenna must be correct when switching off and on the evaluation unit without further corrective actions. Yellow and green LED must be on, see 'Control LEDs', description evaluation unit

If data are not available after switching on the evaluation unit (green LED off, see 'Control LEDs', description evaluation unit) the HF1 and HF2 connections of the sensor signal amplifier must be changed at the rotor antenna. Proceed the rotor antenna adjustment again.

A	\bigcirc
n	5
b	

After successful adjustment of the rotor antenna the connections HF1 / HF2 of the sensor signal amplifier must not be changed!

4.3 Sealing with Ultifil

Sealing of Sensor Signal Amplifier and Rotor Antenna

- **1.** Mask the area which will be sealed with a suitable adhesive tape (e.g. Tesa tape, crepe tape)
- 2. Mix the grouting **Ultifil** according to instruction (50% component A + 50% component B, depending on proportion of weight)
- **3.** \blacktriangleright Cover the complete area abundant with sealing compound by dint of a spattle or paint-brush .

4. Distribute the sealing compound with a paint-brush onto the sealing area.

NOTICE!

Do not to disconnect or damage the connections and cables at the sensor signal amplifier!

5. Even the sealing compound thoroughly with a paint-brush.

6. Put additional sealing compound with a spattle onto the area of increased parts (sensor signal amplifier, cables).

Z. Apply fabric tape. The inflexible fabric edge of the first layer should be positioned outside.

8. Wrap the fabric tape onto the sealing and cover concurrently the surface of the tape with sealing compound. Overlapping range approx. 50%.

The fabric layers must become a compound. Cover the complete area of measuring position, sensor signal amplifier and rotor antenna thoroughly with sealing compound.

9. After wrapping coat the surface completely with **Ultifil**.

Mind that the fabric tape is warped close to the masking tapes but <u>not</u> above!

10. Without interruption add a further layer of fabric tape and fix it with sealing compound.

11. At the end of the second layer cover the upper and lower side of the fabric tape with sealing compound.

12. Cut the fabric tape with scissors diagonally.

13. Even the sealing area once again completely with a paint-brush.

- **14.** Remove the masking tape with the sealing is wet.
- **15.** Hardening of sealing compound in horizontal rotating posture.

Requirements:

- 24 h with room ambient temperature
- or alternative 2 h with radiant heater 125 W, $\,$ distance 100 mm ± 20 mm $\,$

16. Final test of shaft for function:

- torsion,
- energy / maximum distance
- data communication RMC

4.4 Coupling / Installation

Antenna Coupling

DANGER!

Risk of Faulty Measuring Data and Resulting Subsequent Errors, up to Injury to Persons

Damaging, modifications or disturbance of the coaxial cable(s) may falsify the measuring results and optionally cause subsequent errors according to operation purpose.

Do not buckle the coaxial cable!

Do not modify the coaxial cable!

Do not keep data cable and the coaxial cable together with energy- / high-power current cables!

The connectors of the HF energy and / or HF data coaxial cable must not have connection to the grounding of the machine!

Permissible bending radii for coaxial cables:

- RG58 \rightarrow R_B = 25 mm
- RG400 \rightarrow R_B = 30 mm static / 50 mm dynamic
- $RG178 \rightarrow R_B = 15 \text{ mm}$
- RG213 \rightarrow R_B = 50 mm
- RG316 \rightarrow R_B = 15 mm

The bending radii of the used coaxial cables must not be undercut

Damaging of Antenna System

Contact between rotor antenna and stator antenna while operating may cause mechanical damages of the antennas

The stator antenna must not touch the rotor antenna.

CAUTION!

CAUTION!

Risk of Damaging of Electronic, Faulty Measuring Data While overheating of the evaluation unit the built-in electronics may be damaged

An overheated evaluation unit may cause faulty measuring values and respectively subsequent errors

The evaluation unit must be mounted onto a heat conductive base.

Damaging of Evaluation Unit Caused by High Vibrancy *High Vibrancy of the evaluation unit may cause damaging*

While mounting in environments with high vibrancy (e.g. in vehi-

cles) the evaluation unit must be mounted vibration damped, e.g. by rubber buffer.

The stator antenna must be mounted directly opposite to the rotor antenna

The stator antenna must be mounted in the middle of the moving range of the rotor antenna

Fig. 13: Coupling

Starting

DANGER! Risk of Injury

Incorrect installation can cause injury to persons directly while the installation or during the subsequent startup

Follow mandatory the rules for accident prevention!

- 1. Mount the sensor signal amplifier with the rotor antenna
- **2.** Place the stator antenna correct to the rotor antenna
- 3. Connect stator antenna with the evaluation unit
- 4. Switch the system on
- **5.** Connect the evaluation unit via USB interface with the computer
 - On initial starting install the software (see chapter Software description)
- 6. Release measuring point completely
- **Z.** Set the output signal to 0.000 V via software and measuring at the 'analog signal output'
- 8. Load the measuring point with nominal load or set the cal. signal permanently
- **9.** Adjust the output signal by software and measuring of the 'analog signal output' to +10.000 V (loaded) or by adjustment through cal. signal to the specified calibration value (see calibration protocol).
- **10.** Release the measuring point completely or remove the cal. signal.
- **11.** Check the output signal to zero. Repeat step 6 to 11, if necessary.

4.5 Test Circuit

Operation mode strain gauge sensor (full bridge)

Fig. 14: Test circuit

5 Options

Optionally available

- Temperature measurement (PT100, Thermocouple)
- without Remote Control
- waterproof (sealed)
- ATF oilproof (sealed)

6 Software Interface for 1-4 Channel Systems V2.8.300

The software is not part of the actual shipment. Chapter for information.

Requirements

Windows 7, Windows 10 (German, English Version) - 32 Bit / 64 Bit
1 GHz processor or higher, depending on the data throughput of the system during recording.
1 GByteRAM, 500 MByte free hard disc space

Net Framework 3.5

6.1 Installation of the USB Driver - Installation steps for Windows 7 / 10

- 1. Connect the USB interface of the telemetry systems to the PC
- **2.** The USB interface is recognized by the PC:

Fia	15
i ig.	10

Fig. 16

3. Mark 'NO connection to Windows Update'

4. Mark 'Install the software NOT automatically'

Fig. 17

Fig. 18

Fig. 19

7. [Get ready]

⇒ The installation of the driver is now finished. The device can now be used with the Manner Interface Software. For using more devices repeat the installation steps.

5. Enter the path and the name of the driver (e.g. included CD / USB stick)

6. Repeat step 3 to 5, thus two instances of the driver were installed

If there are troubles with the installation of the driver e.g. incompatibility with other devices which also use the USB converter of FTDI Chip, the already installed driver can be removed from the driver path with the program 'FTDIUNIN.EXE'. Then restart the installation.

6.2 Installation of the Software

Select path of the installation software with the Windows Explorer and start program SETUP.EXE (e.g. D:\TelemetryinterfaceV2.x.xxx\Telemetryinterface_Vx.x.xxx_32Bit, or rather ...\Telemetryinterface_Vx.x.xxx_64Bit on the installation CD in drive D:) and follow the instructions.

If required, please install also Net Framework 3.5 you can obtain this from Microsoft over internet (**Netframework 3.5 redistributable x86**)

2. The program can now be started either with a link item at the desktop or with [*Start*] -> [*Program*] -> [*TelemetryInterfaceV2.x*]

6.3 Installation of the additional Data Viewer Software for MDF Files

PVIEW (optional with data acquisition)

On the enclosed data storage (USB stick or CD) there is also a free data viewer from Stiegele Datensysteme GmbH (<u>http://www.stiegele-systems.de</u>). The software shows the content of the MDF file that is recorded while the measuring period.

- **1.** Select path of the additional software with the Windows Explorer and start program SETUP.EXE
 - (e.g. D:\PVIEW\setup.exe on the installation CD in drive D:)
- **2.** Select language and continue the installation.

1

3. Set path to C:\Programme\PVIEW. In this case the Interface_USB software of Manner and the PVIEW software are directly linked together

4. • Perform the further installation steps and complete installation

At systems with limited user rights, the software will output an error, however, the software will work correct.

Screenshots are from a German Windows System.

Fig. 20

6.4 Setting up the Interface-Software

Configuration

When using the software for the first time the hardware must be configured select [menu] -> [Setup] -> [Hardware configuration] to configure

Not all functions are available in every hardware configuration.

Please select main-menu

Setup -> Hardware-Configuration

Selection of the right configuration for the Device and the Interface - see attached configuration sheet

Fig. 21

	Description	Setting for the delivered system
1	Number of channels	1
2	Selection RMC - only for systems with Remote Control	yes
3	Selection RPM - only for systems with RPM acquisition	no
4	Selection Radio - only for systems with radio transmission	no

	Description	Setting for the delivered system
5	RPM-Pulse	
	Optional: Setting of RPM parameters	
	Pulses per rotation	
	Averaging factor	
	Sample rate (samples/s)	
6	Optional: Choice calculation on / off	
7	Optional (if calculation is on):	
	Value for "Torque value for fullscale"	
8	Choice of the used interface.	USB
9	RMC Rotorsoftwareversion	1.6 or higher
10	Input system frequency	13,56 MHz

Authorization Level

[Menu] -> [Setup] -> [Authorization Level]

With this settings, it is possible to set different modes for the PC software. The settings are still present at next start of the software.

User (no password required)

Settings for normal operation mode. With this setting, no permanent modifications on the measurement system are possible.

Administrator

In this mode, modifications on the measurement system are possible (e.g. changing amplification over RMC) The password for this mode is "RMC2000''

6.5 Using the Interface Software

Configuration

Only for RMC systems.

Configuration Retor Configuration Start Serial Number 37716 Step Sample Rate 4,02 kHz Rator Voltage 6,7 V Cat off Softwareversion 1,8	Display-Configuration Measured Value Channel 1 U1 CH 2 Uate 0 10 Offreet 0 0 Digits 1 3
User Field 1 5 Description 1 Edit User Field 2 6 Description 2 Edit	Show Binary Digts Display Average 3 128 pts 4 pts 1 hpts 5 how external DISPLAY Defaultsettings 1 1 t-100% RFM
7 Read Temperature 24.3 °C 8 Test Connection	Calculated Power (P- 2* PI * M * n) 6283 kNm
Status-Information Receiver 4.01 kS/s Fileoperation Receiver Memory OK CRC OK 9	Acknowledge Calinactive

Fig. 23

1	Start display data				
2	Stop display data				
3	Remote calibration on				
4	Remote calibration off				
5	Description field 1	User programmable description field (saved in the rotor-			
6	Description field 2	memory)			
7	Read the temperat	ure of the rotor electronic via RMC (only for RMC systems)			
8	Start / Stop of the	Test-RMC transmission (only for RMC systems)			
9	Communication dis	splay:			
	Receive / Transmit / Acknowledge additionally Low-Power (in radio applica- tions)				
	While data transmission to the rotor CRC errors can briefly be shown. This is not relevant to the function. If the transfer fails, a separate dialog box will be displayed.				
10	Display of the selected hardware configuration				
11	Display of the measured value channel 1				
12	Display settings: Unit, Scale, Offset				
13	Average: Number of values used for averaging of the displayed analog value				
14	Bar diagram of the analog output value				
15	Uses predefined se	ttings for the display configuration			
16	Save: Saves the d	isplay settings			

RMC - remote control

Only for RMC systems.

Chart	Sensitivity		Rotor Mem	ory	3,76	Channel 1 3 V
Stop 3	01,0000 v mV	(N (Read note)	Read Values	Read Values	Userfield 1	Userfield 2
Calon			Send Value 7	Send + Store (11)	Description 1	Description 2
Cal off	Uffset					n - RPM [1/min]
	mV	(Read note)	auto-Set Sens. (8)			00598
fempsensor			Auto-Zero			
internal					Show e	external DISPLAY
🔾 external						
	aujusteu ior a 5500iiii	ical calibration	ne exact settings has	Calaulate		
	Calculation of a correct	tion factor for differ	ent bridge resistors:	Calculate		
	Calculation of a correct	iter	ent bridge resistors:		 Calculated Powe 	r (P= 2 * Pl * M * n)
Gain Adjustfactor	Fileoperation - Compu	tion factor for differ	ent bridge resistors: Load Va		Calculated Powe	r (P= 2 * Pl * M * n)
Gain Adjustfactor Autoset	Calculation of a correct	tion factor for differ ter Path	ent bridge resistors: Load Va ame Save Va		Calculated Powe	r (P= 2 * PI * M * n) W
Gain Adjustfactor Autoset	Calculation of a correct	tion factor for differ tter Path Filen	ent bridge resistors: Load Va ame Save Va		Calculated Powe	r (P= 2 * PI * M * n) W
Gain Adjustfactor Autoset atus-Informatio 4,02 kS	Recention of a correct Fileoperation - Computer Fileoperation - Computer Fileoperation	tion factor for differ tter Path V Filen Receive Tr	ent bridge resistors: Load Va ame Save Va	lues lues ce Cal active	Calculated Power	r (P= 2 * PI * M * n) W
Gain Adjustfactor Autoset atus-Informatio 4.02 kS/ Memory (Calculation of a correct Fileoperation - Compu	tion factor for differ ter Path Filen Receive CRC OK	ame Cave Va	lues lues	Calculated Powe	r (P= 2 * PI * M * n) W

Fig. 24

- 1 Remote calibration on
- 2 Remote calibration off
- 3 Input field for the sensitivity
- 4 Input for the zero point
- 5 Selection of the used temperature sensor: internal sensor (standard) or external temperature diode
- 6 Read actual active values
- 7 Transmission of the settings temporary storage: The settings keep actual as long as the measuring amplifier is powered. If the power supply breaks the previous stored settings will get active. This function is useful for tests or alternative settings because it allows a quick update of the measured value. After a successful adjustment the settings can be stored permanently into the EEPROM of the rotor with [Send and store].
- 8 Automatic gain function: Calculates the gain on a moved system new and sends it to the rotor electronic. The desired output value can be typed into the enquiry field. To keep this value permanently it can be saved with [Send and store].
- 9 Automatic zero point: Calculates the offset on the basis of the actual measured value and the actual gain to correct the output voltage to Zero. If necessary do this function repetitive. To save this offset permanently store it with [Send and store].
- 10 This function allows the re-import of the saved (EEPROM on rotor) settings of the rotor measuring amplifier. It is useful to read back these values at start parameters before starting the adjustment.
- 11 Transmission of the settings permanent storage: Zero point and gain are sent to the measuring amplifier and stored permanently in the EEPROM of the rotor.

Oscilloscope - optional

Telemetryinterface R2.8Revision 300	
Ele Setup Tools Info	
Configuration Remote-Control Scope Data-Recording Service Configuration: PCMRMC1-Channel RPM Interface V2 - USB	
PC-Scope Measured Value Channel 1	
Start Autoscale 3,762 V	
Stop Reset Offset Userfield 1 Userfield 2	
Callon Description 1 Description 2	
n · BPM [1/min]	
Caron when the	
Show external DISPLAY	
Mrs 3237V Mes 3789V Arg 3752V 0.651Vis 1) Timescale 2) Gain 3) Offset	
200 Samples/div 0 05 V/div -3 763 V -3 763 V	
236 W	
Status-Information	
4,01 kS/s Fileoperation Transmit Acknowledge Callactive	
Please select device MARSTAPI MANNER TELEMETRY INTERFACE V2.0	
FTT02G2WB MANNER USB-Interface 2.0 B	

Fig. 25

- 1 Setting time base
- 2 Setting gain
- 3 Setting offset

1	Start recording into a file
2	Stop recording into a file
3	Show data with additional external viewer PVIEW - if installed
4	Display file operation activity
5	Input field for path and file name

Data recording - optional

6 Additional information, which is saved in the description files 7 Option for RPM-systems save calculated rpm or save rpm-pulses to datafile On menu setup, there is the possibility to activate an averaging for the cal-culated rpm. For option 'Calculated RPM' take care of the correct setting at configuration (sample rate). NOTICE! No other program must be active at the PC while recording data

into a file. This can effect a loss of data.

Service

Only for RMC systems.

Enables the possibility for re-calibration of the analog output - available for rmc systems

Telemetryinterface R2.8 Revision 3	00	
Ele Setup Tools Info		
Configuration Remote-Control Sco	pe Data-Recording Service Configuration: PCMRMC1-Channel RPM Interface V2 - USB	annal 1
Start User Manufactur	er 3,762	2 V
Stop	Userfield 1	Userfield 2
Cal on	Description 1	Description 2
Cal off		n - BPM [1/min]
		30000
Read Hardware Configuration	(1) Change Hardware Configuration	ernal DISPLAY
Calibrate Analogue D	uput 2 -10V 0V -10V Release	P= 2 * PI * M * n) 5 W
Status-Information 2,23 kS/s Memory OK	tion Roteitxa Trensmit Acknowledge Calactween CRC OK Dnline Ext	
Please select device MARSTAR FTT02G2 FTT02G2	MANNER TELEMETRY INTERFACE V2.0 WA MANNER USB-Interface 2.0 A MB MANNER USB-Interface 2.0 B	

Fig. 27

- Option to change the hardware configuration of the interface according to instructions of the manufacturer. 1
- This mode simulates a constant value from the rotor. This option enables the check and possibility for re-calibration of the analog output voltage 2
- 3 Switches back to measurement mode

Tool for strain gauge calculation

🔤 Strain Ga	age Calculation		
Mt D	2000 v 40 v	[Nm] [mm]	Moment of torsion, torque Outside Diameter
d	0 v Steel v	[mm]	Core Diameter Material
E v	→ 210000 v → 0,285 v	[N/mm²] [1]	E-Module Transvers Elasticity
k n	2,2 • 4 •	[1] [1]	K-Factor Strain Gage
Rb	350 🗸	[Ohm]	Bridge Resistance (for Calculation of the Cal-Resistor)
			<u>C</u> alculate
e _o	2,1425	[mV/V]	Sensitivity for unloaded bridge -> Copy Value to Clipboard
Rcal	51,05 🗸	[kOhm]	Cal-Resistor for 80,00 % Excitation
			Egit

Select [Main-Menu] ->[Tools] ->[Strain Gauge Calculation Torsion]

With this tool it is possible to calculate the sensitivity of a strain gauge for torsion measuring.

Additionally the shunt resistor for the calibration-function is calculated.

Please refer to the technical data of the strain gauge and the used material for the different coefficients.

6.6 Data file format (Option Data Acquisition)

The data are recorded in a binary format. The file has the ending `.DAT'. The data can be imported in every analyzing software, which can handle with binary data.

Additionally there are generated two description files:

- MDF-description-file: This file is used to describe the structure of the binary file. The description file is necessary for the data viewing software PVIEW from Stiegele Datensysteme GmbH.
- Text-description-file: Description information in plane text

Format of the Binary File (.DAT)

Data Format

First the Low-Byte and then the High-Byte of a channel is recorded.

The range of a 12 and 16 bit system is from 0 to 65535

For 12 bit-systems, the lowest 4 bits are set to 0

Table 1: Assignment to the analog values:

Definition: LB= Low Byte, HB=High-Byte

Excitation 100%	correspond to analog output +10 V	digital value 62259 for 16 bit system
Excitation 0%	correspond to analog output 0 V	digital value 32768 for 16 digital value
Excitation -100%	correspond to analog output - 10 V	digital value 3277 for 16 digital value

Excitation [%] = (Digital-Value - 32768) / 294.91 for 16 Bit-Systems Values, which exceed this range are not within the measuring range.

The time between two measuring values in the .DAT-file corresponds to the reciprocal value of the sample rate of the system (see page technical data) A optional calculated power-value is saved as 4-Byte float.

6.7 Data File-Structure (Option Data Acquisition)

Structure of the Binary File with extension .DAT: Sample file shown with a Hex Viewer

- 1		0001	0203	0405	0607	0809	0A0B	OCOD	OEOF	
	0x00000	FF7E	FF7E	FF7F	FF7F	FF7F	FF7F	FF7F	FF7F	1
-	0x00010	FF7F								
	0x00020	FETE	FF7F							
	0x00030	FF7F								
1	0x00040	FF7F								
	0x00050	FF7F								
	0x00060	FF7F								
	•									Ć

Fig. 29

Structure of the Text Description File with extension .txt

	[Data-Description f: Version: Binary-Filename: Time of Record: Samples per Frame: Bytes per Sample Samplerate [1/s]	ile] 1.0 dataset1.dat 24.01.2008 17:15:39 2 4 6511,48
1	[Channeldescription] Channelnumber: Name: Label: Unit: Factor: Constant: Dataformat:	1 Ch1 Channel 1 V 0,000339086500966397 -11,111864636669 4
	Channelnumber: Name: Label: Unit: Factor: Constant: Dataformat:	2 Ch2-RPM RPM 1/s 1 0 4

Fig. 30

1	First measuring value	
	FF=Low Byte	
	7F=High Byte	
2	Second measured value	

Structure shown for a system with two channels

- 1 Factor and offset constant to calculate the physical value from the binary value Example: Binary Value 62259 * (0,00033908..)+ (-11,1111..) = 10 V [Unit]
 - Data format: 4 for 2-Byte Integer, 9 for 4-Byte Floating-point

7 Maintenance

The systems of Manner Sensortelemetrie are low-maintenance.

Risk of Injury Caused by Defects on System Built-Up Particularly loose or damaged parts may endanger present persons

Carry out the maintenance regularly and assiduously.

Within a periodical repeating maintenance following operations have to be done:

- Clean the antenna system, vacuuming of dust deposit
- Check the antenna system for scrub marks or mechanical damages
- Check the fastening of the stator antenna for a fix seat and tighten of the screwed fastenings where necessary.
- Check the plug connections and cables

\bigcirc	Document the completed annual maintenance

8 Contact

MANNER Sensortelemetrie GmbH

Eschenwasen 20 D - 78549 - Spaichingen Tel.: +49 7424 9329-0 Fax: +49 7424 9329-29 www.sensortelemetrie.de info@sensortelemetrie.de